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Abstract. The concept of active zone in the Laplacian transport to and across irregular interfaces is
rigorously introduced. It applies to arbitrary geometries and uses the coarse-graining method proposed by
Sapoval to compute the flux across an irregular interface from its geometry without solving the general
Laplace problem. Such transport play a dominant role in electrochemistry, heterogeneous catalysis and
physiological diffusion processes. In the field of electrochemistry, the method permits one to predict the
impedance of an electrode of arbitrary geometry for any value of the frequency. It shows that, for systems
with aspect ratios of the order of a few times unity or less, impedance spectroscopy yields in principle
a reliable approximate measure of the length of the chord corresponding to a perimeter length inversely
proportional to the interface capacitance and frequency. For these cases, impedance spectroscopy can
determine the shape of an electrode to the extent that the knowledge of the average chord length as
a function of the perimeter determines the shape. For systems of arbitrary geometry, it is shown that
impedance spectroscopy permits a measure of the size of the active zone. These results can be transposed
to several problems related to Laplacian transfer, such as etching of irregular solids and catalysis in the
Eley-Rideal regime.

PACS. 82.80.Fk Electrochemical methods – 64.60.Ak Renormalization-group, fractal, and percolation
studies of phase transitions – 82.65.Jv Heterogeneous catalysis at surfaces

1 Introduction

The title of this paper refers to a celebrated work by Mark
Kac “Can one hear the shape of a drum?” which has trig-
gered many studies about the eigenvalue distribution for
the harmonic equation [1]. The answer to that question
was shown to be negative since drums of different shapes
may have the same spectrum [2].

In the work presented here and in the following paper
[3], two very different answers to the question addressed
in the title are given. In both cases, the question is trans-
formed in a purely mathematical problem. However, the
formal nature of these two problems, that will be called
problem I and problem II, are essentially different.

Here we discuss how electrode impedance spectroscopy
permits one to measure in all cases the length of the ac-
tive zone in an electrodic process, that is the length of the
zone where the transfer of charge or matter or excitation
due to Laplacian transport is really effective. For the class
of geometries which do not contain deep pores with large
aspect ratios, it is shown that one can answer positively,
although approximately, the question. More precisely we
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show that, at least in d = 2, impedance spectroscopy gives
a reliable measure of the average chord length correspond-
ing to a perimeter which is a simple function of the fre-
quency. This paper is restricted to the introduction and to
the critical tests of these notions. Detailed demonstrations
of some of the notions that are used here are presented in
the following paper [3].

We consider the linear transport across irregular in-
terfaces such as electrodes or membranes, a common phe-
nomenon in many natural or industrial processes. The ba-
sic concepts used here are the general properties of fields
deriving from Laplacian potentials. They can then be ap-
plied to any transport due to Laplacian fields. Exam-
ples are the electrical response of electrodes in contact
with electrolytes or diffusional steady states transport to
and across a membrane where neutral reacting species
are brought to the surface by diffusion currents instead
of electrical currents in electrochemical systems [4]. For
instance, it applies to the diffusional transport of oxygen
in the terminal part of the respiratory system of mam-
mals [5]. Its frequent occurrence and its practical impor-
tance have justified a number of studies on the influence
of the interface geometry on the net flux across such inter-
faces. The possible role of the fractal structure of the inter-
face has been extensively studied. (For a review on fractal
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electrodes, see references [6,7] and the references therein).
The same problem arises in the Eley-Rideal mechanism in
heterogeneous catalysis where reactants have to diffuse to
a catalytic porous surface in order to react [8]. In a still
different situation, the same phenomena may play a role
in nuclear magnetic relaxation of a fluid embedded into
a porous material. In that last situation, nuclear spins
diffuse with molecular diffusion towards pore walls which
may have magnetic relaxing properties [9,10].

The purpose of this paper is to introduce rigorously
and to test the notion of active zone from the notion of sur-
face dissipation. As the physical dissipation in an interface
cannot be measured directly, it is of interest to compare
this dissipation, or more precisely the “heat impedance”
to be defined, to the quantity that is currently measured
by impedance spectroscopy. The comparison will be made
for simple irregular cases, for a standard fractal electrode,
and for deep irregular pores.

Recently, a finite scale renormalization procedure has
been proposed which, as shown here, is a method to es-
timate the size of the active zone. This method should
permit one to compute the response of any structure in
d = 2 from the geometry only of the interface (or from its
picture) [11]. This method has been called the “rope walk”
method in [8]. It is called here the “land surveyor method”
because it is based on a finite size renormalization of
the real topography of the electrode. Finally, we address
the inverse problem: “to what extent can the shape of
the electrode be found from the knowledge of the fre-
quency dependence of the impedance?”. The answer that
is given to that question, although approximate, is posi-
tive in the case where the aspect ratio is not too large. It
is also shown that impedance spectroscopy makes possible
the detection of deep pores.

The notion of active zone is first introduced, and its
connection with the “land surveyor method” discussed.
Here, we will eventually use some exact theoretical re-
sults which are obtained in the following paper. Next, the
prediction of the method is tested by extended numerical
simulations. The following section is devoted to the dis-
cussion of the inverse problem: Can one here the shape
of an electrode? And finally, the practical consequences of
this work are discussed.

2 The notion of active zone

We first recall briefly the nature of the problem that
we address. Consider the electrochemical cell shown in
Figure 1a: the response of this cell is governed by the
resistivity ρ of the electrolyte and by the rate of charge
transfer occurring at the interface. The transport equa-
tion in the volume is J = −∇V/ρ, where J is the vector
current in the electrolyte and the potential V obeys the
Laplace equation ∆V = 0 in the bulk of the electrolyte.

The rate of charge transfer occurring at the inter-
face is characterized by a resistance per unit surface r
(known as the faradaic resistance) and if any, by a ca-
pacitance γ per unit surface. The current at the surface
is Jn = −V (r−1 + jγω), where V is the local potential in
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Fig. 1. General Overview. (a) Schematic representation of the
type of electrochemical cell under study. The working elec-
trode presents an irregular geometry. The electric potential
obeys Laplace equation in the bulk. A constant potential V0

is applied on the counter electrode. The finite transfer across
the working interface imposes a mixed boundary condition
V/∇V = r/ρ = Λ. In the equivalent steady state diffusion
problem, a concentration C0 is maintained on the diffusion
source situated at the counter electrode location. The bound-
ary condition in that case is C/∇C = W/D = Λ. (b) Scheme
of the coarse-graining or finite renormalization procedure. Suc-
cessive ropes of length Λ determine successive chords of lengths
Lc1, Lc2,...

the electrolyte at some point “very near” the interface. We
restrict our study to the case where the smallest geometri-
cal feature in the geometry is much larger than the Debye
length. Consequently, in the region that we consider, we
may use the Laplace equation instead of the Poisson equa-
tion for the electrical potential [12,13]. There is then a sin-
gle parameter (r−1 + jγω) to describe the charge transfer
at the interface, and the extension from d.c. to a.c., or in-
versely will be discussed later. We here consider only the
d.c. problem as illustrated in Figure 1a where the outer
electrode is at potential V0 and the inner electrode at the
zero potential. Due to charge conservation, the current
Jn = −V/r crossing the electrode surface must be equal
to the Ohmic current Jn = −∇nV/ρ reaching from the
bulk. As a consequence the boundary condition can be
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written as

V

∇nV
= Λ =

r

ρ
· (1)

This introduces a finite length scale Λ in the problem.
From a mathematical point of view, the problem is to
find the properties of the Laplacian field on the surface
with the so-called Fourier or mixed boundary condition
(1). The role of the length Λ on the current distribution
on irregular electrodes was already recognized in the late
forties [14,15].

There exist two ways to define the electrode
impedance. First, the electrode impedance can be de-
fined by the way it is measured through impedance spec-
troscopy. In this frame, the equivalent circuit of a cell like
that of Figure 1 is represented by two resistances in series.
First, the resistance of the electrolyte R0 which is propor-
tional to the electrolyte resistivity ρ and depends upon the
geometry of the cell. It is the value of the cell impedance
Zcell for r = 0. Second, the electrode resistance Zode,spect.

which depends on r, ρ and the electrode geometry, such
that

Zcell,spect. = R0 + Zode,spect.. (2)

We introduce an other definition of the electrode
impedance from the power heating at the electrode in-
terface. We call that impedance Zode,heat. It is defined by
the relation

Zode,heat I
2 =

∫
electrode

[rj2
n] dA (3)

where the integral is taken over the electrode surface.
These two impedances need not be identical. The inter-
est of the second definition is that it describes directly the
electrode impedance in terms of the real surface resistance
r which is “heated” by the local current jn. In this frame,
the boundary condition (1) determines the distribution of
jn. In order to obtain quantities which can be compared
to measurements made on real electrochemical cells [7],
we introduce the thickness b of the cell along the third
dimension such that dA = b× ds, where s is the curvilin-
ear coordinate along the electrode. Now Zode,heat can be
written

Zode,heat =

∫
electrode

rb

(
jn

I

)2

ds. (4)

The total current I is the integral of the current density
I =

∫
electrode jnbds. Using a normalized current density

jn,N = jnb/I normalized in the plane by

∫
electrode

jn,N ds = 1 (5)

we have

Zode,heat =
r

b

∫
electrode

(jn,N)2ds. (6)

This definition allows one to introduces naturally a
“length of the active zone” by

Lact.,heat =

[∫
electrode

j2
n,Nds

]−1

(7)

from which the heat impedance takes the ordinary form

Zode,heat =
r

bLact.,heat
· (8)

It should be stressed that in general, the “spectroscopic”
impedance Zode,spect. and the “heat” impedance Zode,heat

are different because the power I2Zode,spect. is equal to
I2Zcell − I2R0. This is the difference of the power dissi-
pated in the cell for finite r minus the power dissipated in
the electrolyte when r = 0. On the opposite, Zode,heat mea-
sures the power really dissipated in the interface. As shown
later from theory and from numerical simulation, both
quantities are close, so that the spectroscopic impedance
can be considered as an approximate measure of the length
of the active zone Lact.,heat. Moreover, it will be shown rig-
orously in the following paper that, whatever the electrode
geometry, the following relation holds:

Zode,heat = r
∂Zode,spect.

∂r
· (9)

It should be stressed that the heat impedance is not the
real part of the electrode impedance measured in spec-
troscopy. This will be discussed later.

The knowledge of the experimental quantity Zode,spect.

permits then, in principle, the computation of Zode,heat

and of the length of the active zone. The goal of our in-
vestigation is first to compute and discuss the electrode
impedance in approximate but simple “topographic”
terms. In a second step we discuss the inverse problem
which can be formulated as follows: when ones measures
the impedance of an irregular electrode, what can be
learned about its geometry?

There are in fact two cases. First, consider surfaces
with not too large aspect ratios. It will be shown that in
this case the “land surveyor method” allows to transform
the inverse physical problem in a purely mathematical
problem. Second, whatever the geometry, the impedance
spectra really measures the length of the active zone
through relations (8) and (9). As we will see in the fol-
lowing discussion, it makes possible the detection of deep
pores.

3 The land surveyor method

The Land Surveyor Method (LSM) permits one in princi-
ple to compute Zode directly from the electrode shape and
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the value of Λ [11]. The idea is to substitute the problem of
Laplacian transfer across a real electrode (which presents
a finite transfer rate) by a problem of Laplacian field
obeying the Dirichlet boundary condition (V = 0) but
with a different geometry, obtained by a coarse-graining
of the real geometry to a physical scale determined by the
length Λ.

The Dirichlet Laplace problem on irregular electrodes
has been thoroughly studied, at least in d = 2. Note that
the Dirichlet problem is known as that of “primary cur-
rent distribution” in the field of electrochemistry. More
specifically, an important theorem, Makarov’s theorem,
describing the properties of the current distribution on an
irregular (possibly fractal) electrode can be used [16,17].
This theorem states that the information dimension of the
harmonic measure (here the harmonic measure is the nor-
malized current density) on a singly connected electrode
in d = 2 is exactly equal to 1. This very special property of
the Laplacian field can be illustrated in the following man-
ner: whatever the shape of the working electrode, the size
of the region where most of the current flows is propor-
tional to the overall size (or diameter) L of the electrode
under a dilation transformation.

This result generalizes to arbitrary geometry a fact
which has been known for a long time for simple geome-
tries. It has a simple but profound meaning in terms of
the screening efficiency of the geometrical irregularity, and
this is what we use here. We consider the simplest descrip-
tion of an irregular electrode: the ratio S = Lp/L of the
perimeter length Lp divided by its size or diameter L [18].
This number S, although defined very simply, has a direct
physical significance. It measures the screening efficiency
of the irregularity of the structure for Dirichlet Laplacian
fields for the following reason. Whatever the geometry, if
the active zone has a size L, then as

L =
Lp

S
, (10)

the factor 1/S can be considered to be the “screening ef-
ficiency” of the primary current distribution due to the
geometrical irregularity. This is the physical significance
of Makarov’s theorem.

This result cannot be applied as such to an electro-
chemical cell because the boundary condition on the elec-
trode is not V = 0 but V/∇nV = Λ. We are then in the
situation known as the secondary current distribution in
electrochemistry. The real boundary condition introduces
the physical scale Λ in the problem. The procedure that
was proposed in [11] is to switch from the real geometry
obeying the real boundary condition to a coarse-grained
geometry obeying the Dirichlet boundary condition, with
the coarse-graining depending on Λ. In a second step, one
can use the screening efficiency of the coarse-grained ge-
ometry to find the active zone, hence its impedance.

This procedure has been recently applied to the study
of inhomogeneous irregular electrodes [19], and we recall
here its essential ingredients. The curvilinear coordinate
along the electrode is called s. A region of perimeter ds
around the curvilinear coordinate s presents an elemen-
tary admittance Ysurf. = [b/r]ds which is smaller than the

“local access admittance” of order b/ρ. This “local access
admittance” represents the admittance of the small bulk
area which is in front of this part of the interface. The
value of this local access admittance does not depend on
the diameter of this area since the admittance of a square
of electrolyte with thickness b is equal to Yacc. = b/ρ what-
ever its size.

One can then consider a larger region between curvi-
linear abscissa s1 and s2. Depending on s1 and s2, there
exist two situations: if the curvilinear distance between
s1 and s2 is small, the current is limited by the surface
impedance. Such an element works then uniformly. On
the contrary, if this distance is large enough, the current
is limited by the bulk resistance to access the surface, and
such an object does not work uniformly. But in the lat-
ter situation, we are, in a first approximation, back in the
case of a pure Laplacian field with the boundary condition
V = 0, since it is the access to the surface that limits the
current. Direct visual observation of the active region in
irregular electrodes has shown that these facts are verified
experimentally [20].

The idea then consists in coarse-graining locally the
real geometry to a scale such that the perimeter Lp1 in
a region of size (or diameter) Lc1 is given by the condi-
tion that the integral of [b/r]ds along that part of the
perimeter is equal to the access admittance Yacc. = b/ρ.
Equivalently, the integral of ds/Λ over that same region
should be equal to 1. This means that the curvilinear dis-
tance (s2−s1) along the electrode is equal to Λ. The chord
length Lc(s) is thus defined as the distance between s1 and
s2 in real space. Practically, we use instead the “local”
chord between the curvilinear coordinates s1 = s − Λ/2
and s2 = s+ Λ/2.

Because of its definition, a coarse-grained region can
be considered as working uniformly. At the same time, in
the new coarse-grained geometry, we are dealing with a
pure Dirichlet Laplacian field. We then shift from the real
geometry to the coarse-grained geometry which is made of
successive chords Lc1 = Lc(s0, s1), Lc2 = Lc(s1, s2), . . .
This coarse-graining process is illustrated in Figure 1b.

This operation can be performed whatever the value
of Λ if no deep pores are present in the structure. We first
consider this simple case where the structure conserves as-
pect ratios of order one at all scales – the other case will be
discussed later. The curvilinear coordinate in the coarse-
grained geometry is named s′, as indicated in Figure 1b.
The perimeter of the coarse-grained electrode is named
Lp′ . Each element or grain of the coarse-grained system
presents an admittance b/ρ, so that the differential admit-
tance of an element ds′ is equal to [b/ρLc(s

′)]ds′. By defi-
nition of the coarse-graining, the coarse-grained electrode
works under Dirichlet boundary conditions. If there were
no screening, the total coarse-grained electrode would be
working uniformly and its admittance would be

Ycg,noscreening =

∫
cg

b

ρLc(s′)
ds′, (11)

where the integral is taken along the coarse-grained geom-
etry. But due to electric screening, there exists an active
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zone where most of the current arrives and a passive zone
which receives only little current [11], so that the integral
can be split in:

Ycg,noscreening =

∫
cg,act.

b

ρLc(s′)
ds′ +

∫
cg,pass.

b

ρLc(s′)
ds′.

(12)

The electrode admittance Yode is simply the first integral
above. If one calls Lact.cg the length of the active zone of
the coarse-grained electrode, this integral can be written

Yode = Lact.cg
b

ρ

∫
cg,act.

1

Lc(s′)

ds′

Lact.cg
· (13)

The integral represents the inverse harmonic mean of
Lc(s

′) along the active zone. This average is called 〈Lc〉act.:

〈Lc〉
−1
act. =

1

Lact.cg

∫
cg,act.

ds′

Lc(s′)
· (14)

Our essential hypothesis, using a simplistic interpretation
of Makarov’s theorem, is that the active zone has a size
Lact.cg of the order of the electrode size L. The admittance
then takes the very simple expression

Yode =
b

ρ

L

〈Lc〉act.
· (15)

The fact that Lact.cg is not exactly equal to L will be dis-
cussed later. At this stage the problem has been simplified
without any loss of generality but still requires finding
the active zone of the coarse-grained electrode in order
to compute 〈Lc〉act. from equation (8). One can go one
step further for the wide variety of systems for which one
can approximate the harmonic mean on the active zone of
the coarse-grained electrode by the value of the harmonic
mean on the entire electrode, namely

〈Lc〉
−1
act. ≈ 〈Lc〉

−1 =
1

L′p

∫
cg

ds′

Lc(s′)
· (16)

Due to the fact that the harmonic mean is dominated
by the small values of Lc(s

′), this approximation is valid
unless the smallest values of the chord length Lc(s

′) are
found only in the non-active region of the electrode. A
counter-example to equation (16) could then be the special
case of deep fjords with narrow access channels and small
values of Lc only at the bottom of the fjords (note however
that equations (7-9) are still valid in this case).

Apart from these cases, the harmonic mean of the
chord length will be the same if taken along the active
zone or along the total coarse-grained structure, and the
admittance is

Yode =
b

ρ

L

〈Lc〉
· (17)

A very simple result is then achieved: the impedance of an
irregular electrode in d = 2 is simply the square impedance

ρ/b of the electrolyte divided by the number of chords
needed to measure the size (or diameter) L of the elec-
trode. This apparently simple result is not trivial. It ex-
presses how the resistance of the electrode depends on the
electrolyte resistivity and an average chord length corre-
sponding to a perimeter of length Λ. The geometry enters
through the relation between a perimeter of length Λ and
its associated chord.

As there exists an exact mapping between s and s′

with ds/Λ = ds′/Lc(s
′), the average chord length can

be written also, working on the initial non coarse-grained
geometry

〈Lc〉
−1 =

1

L′p

∫
electrode

ds

Λ
(18)

and using

L′p =

∫
cg

ds′ =

∫
electrode

Lc(s)

Λ
ds (19)

we find

〈Lc〉 =
1

L

∫
electrode

Lc(s) ds. (20)

As a consequence, it is equivalent to consider the harmonic
mean of Lc on the coarse-grained electrode or the arith-
metic mean on the real electrode. Note that equation (20)
can be written

〈Lc〉 =
Λ

〈S(s)〉H
, (21)

where

1

〈S(s)〉H
=

1

L

∫
electrode

Lc(s)

Λ
ds. (22)

The quantity 〈S(s)〉H is the harmonic mean over the
electrode of a “local” Dirichlet screening factor S(s) =
Λ/Lc(s). In that sense 〈Lc〉 measures the average screen-
ing on a perimeter scale Λ.

In the case where narrow pores are present in the struc-
ture, the coarse-graining cannot be performed, because
above some size, the access to the surface can no more be
a square of electrolyte but is a narrow conductor with an
access resistance larger than ρ/b. However, the active zone
is still well defined by equation (7) and can be measured
through equation (9).

The electrode response is related to the chord associ-
ated to Λ. It exists then three regimes, depending on the
value of Λ compared with the smaller cut-off length l and
the total perimeter Lp of the working electrode. The three
regimes correspond respectively to Λ� l, l < Λ < Lp and
Lp � Λ. The intermediate regime (secondary current dis-
tribution in electrochemistry) for which l < Λ < Lp can
be very wide for a porous or fractal electrode. Between
these regimes, there should exist crossovers around Λ = l
and Λ = Lp.
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When Λ = r/ρ is much larger than Lp, that is in the
case of a very resistive or strongly polarizable electrode,
the current is uniform and trivially

Zode =
r

bLp
· (23)

This value is found with good precision in the numer-
ical simulations that will be described later. Note that
in this regime, Lc = L(Λ/Lp) and equation (23) can be
written as Zode = (r/b)(Lc/LΛ) = (ρ/b)(Lc/L), which
means that equation (17) still applies in this regime. The
impedance being proportional to r, the spectroscopic and
heat impedance are strictly equal, due to equation (9).
As a consequence, the length of the active zone calcu-
lated from the spectroscopic impedance should be exactly
equal to the value given by equation (7). For the trivial
regime where jn,N = 1/Lp, one finds (using Eq. (7)) that
Lact. = Lp, corresponding to equation (23).

4 The Makarov regime

For Λ = (r/ρ)� l, the chord Lc is equal to Λ, and equa-
tion (17) predicts

Zode =
r

bL
· (24)

We call this regime the Makarov regime, because the dis-
tribution of the electric field is very close to that corre-
sponding to Dirichlet boundary conditions in which r = 0.
It corresponds to the primary current distribution in elec-
trochemistry or to the response of a weakly polarizable
electrode. Equation (24) can be called the “naive” pre-
diction because it uses a very simplistic interpretation of
Makarov result, namely that the length of the active zone
is equal to L, whereas the correct statement would be that
the length of the active zone should only be proportional
to L.

Here again, the impedance is proportional to r, and
the spectroscopic and heat impedance are strictly equal.
The spectroscopic calculation gives an apparent size Lapp.

defined by

Lapp.,spect. = lim
r→0

r

bZode,spect.
· (25)

It should be equal to Lact.,heat defined by equation(7) us-
ing the Dirichlet current distribution.

For a given electrode geometry, the apparent diameter
Lapp. is proportional to the size L of the electrode for any
finite geometry. This can be justified by applying a dilata-
tion transformation x→ Γx to all lengths. In that trans-
formation, jn,N(Γx) becomes jn,N(x)/Γ from the nor-
malization condition. Then from equation (7), Lact.,heat

transforms into ΓLact.,heat. In other words, Lapp. really
transforms like the size L of the electrode. The fact that
Lapp. is proportional but not equal to L is due to the fact
that the current reaching the active zone is not uniformly
distributed over this zone, as postulated in the Land Sur-
veyor approximation.
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Electrode No 3

l l

Electrode No 1a Electrode No 1b

Electrode No 2

Fig. 2. Examples of electrode geometries under study. The
smaller flat element has a length l. The geometry 1a is concave,
while the geometry 1b is convex. The electrode No 3 is the
third generation of the Vicsek electrode. The numerical results
shown later have been computed with the fifth generation.

The Makarov regime has been studied numerically
with some detail for the electrode shown in Figure 1a,
using a finite difference method. The impedance is calcu-
lated using a square lattice discretization of space. The
electrode surface is represented by resistances r in series
with bulk resistances ρ, and we treat the corners as in
reference [21]. In our computation, we use ρ = 1 and
b = 1, so that the numerical parameter which measures
the length Λ equals r. For the numerical solution of the
Laplace equation, one uses over-relaxation with the con-
straint of exact current conservation and periodic bound-
ary conditions. We have tested several convergence cri-
teria. The electrode impedance Zode,spec. is obtained by
Zode,spec. = Zcell(r) − Zcell(r = 0).

The results are given in Figure 3 to 5. In Figure 3, the
impedance is found to be proportional to r with great pre-
cision. From the slope of Figure 3, one can compute the
apparent spectroscopic length Lapp. from equation (25).
This length is different from the size L = 3. This is due to
the non-uniform distribution of the current. As the cur-
rent density exhibits a singularity around the salient cor-
ners, there is a dependence on the discretization parame-
ter N . This is shown in Figure 4, which gives the relative
variation of the apparent length (Lapp.,spect. − L)/L as a
function of N . The variation gives the effect of the dis-
cretization on the value of Lapp.,spec.. Above N of order
100, the effect of the discretization is weak.

The equality between Lapp.,spec. and Lapp.,heat can be
verified numerically as, equation (7) in discretized form
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Fig. 3. Makarov response of electrode 1a computed with N =
40 segments along the size l. The slope of the curve gives the
apparent length Lapp. from equation (25).

should read

Lact.,heat = a

(∑
m

j2
m

)−1

, (26)

where the index m describes the various discretized sites
of the working electrode and a = 1/N is the finite differ-
ence mesh spacing in the discretized Laplacian problem.
As shown in the following paper, the equality between
Lapp.,spec. and Lapp.,heat is exact even in the discretized
version. The comparison between these two lengths is
shown in Figure 5. The very good agreement between the
values validates both the theory and the precision of the
numerical investigation.

The result (26) can be used, together with the coarse-
graining hypothesis, to obtain the impedance of a self-
similar fractal electrode. Equation (7) indicates that Lapp.

scales like LD2 when the size is increased keeping l
constant (such an operation is not a dilation operation
since the shape is modified). The exponent D2 is named
the correlation dimension of the harmonic measure, here
the normalized current [22]. As the apparent size is a
length, it has to be written Lapp. = const.LD2 l1−D2 =
const.L (l/L)1−D2 because the only other length in the
problem is l. Note that in a dilation operation where the
shape is conserved Lapp. is indeed proportional to L.

This result can be applied to the coarse-grained elec-
trode, which works in the Makarov regime. Following
equation (25), its impedance is

Zode =
r′cg

bLapp.cg
, (27)

where Lapp.cg = const.LD2L
(1−D2)
c and r′cg/bLc = ρ/b or

r′cg = Lcρ. The impedance can thus also be written

Zode =
1

const.

ρ

b

(
Lc

L

)D2

· (28)
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from plots as in Figure 3.

0 50 100 150 200
0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

Number of segments N

L ac
t.,

he
at

 / 
L ap

p.
,s

pe
ct

.

Fig. 5. Ratio of the length of the dissipative zone deduced from
the integral of the square of the normalized current density
(Eq. (7)) to the length of the active zone deduced from the
measurement of the electrode impedance through equation (25)
as a function of the discretization number N .

For a self-similar fractal of dimension Df , the chord length

takes the very simple expressionLc = l (Λ/l)
1
Df and finally

Zode =
1

const.

ρ

b

(
1

L

)D2

l
D2

(
Df−1

Df

)(
r

ρ

)D2
Df

· (29)

The role of D2 was first stressed by Leibig and Halsey
[23], Ball [24] and Ruiz-Estrada et al. [25]. This exponent
D2 being close to 1 even for very irregular electrodes, the
approximation Lapp. ≈ L is always a good approximation.
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5 Numerical study of the Land Surveyor
approximation

In the following, the values of the different impedances
(Zode,spect.(r) given by equation (2), Zode,heat(r) given by
Eq. (7) and the same quantity using the land surveyor
Eq. (17)) are computed numerically for the irregular elec-
trodes of Figure 2. From here and below, the impedances
and the current distributions are calculated using a finite
element method. This method allows the study of very
irregular and fractal electrodes, as a critical test of the
quality of our approximations. For this, we need to study
geometries where the ratio L/l is very large. The study
of the Makarov regime for these electrodes would need to
be of the order of 100 sites on the smaller feature l to be
able to reach the continuous limit. The total linear size of
the mesh would then be of order 100(L/l)× 100(L/l), a
very large number, making computations extremely long.
On the other hand, the Makarov regime can be thought
to be explained both by the theory and verified by the
previous numerics. Moreover, the Makarov regime is inter-
esting from a theoretical point of view, but it is a regime
in which the impedance of the electrode is very small as
compared with the impedance to access the electrode, and
in consequence, the total flux is limited by the access re-
sistance. Practical exchanger systems will work far from
the Makarov regime. For all these reasons, the numerical
study has been made using finite elements and a meshing
which is not sufficient to study the Makarov regime with
precision but sufficient to study the other regimes.

A finite element method is used with l = 1 and ρ = 1.
The standard variational formulation of the problem is dis-
cretized with a triangular mesh and P1-Lagrange interpo-
lation. The linear system obtained in such a way is solved
by using the Cholesky method, from the Finite Element
Library MODULEF (cf. Bernadou et al. [26]). Examples
of meshing are shown in Figure 6.

The results for electrode 1a, 2 and 3 are given in
Figure 7. In this figure, and for each of the electrodes,
the curve, the triangles, and the circles give respectively
the land surveyor prediction, the spectroscopic impedance,
and the heat impedance computed from the distribution
of the normalized current densities through equation (7).
One observes the existence of the three regimes corre-
sponding respectively to Λ� l, l < Λ < Lp, and Λ� Lp.
The general agreement between the different impedances
and the land surveyor approximation can be considered
satisfactory.

Note however that the logarithmic scale which is neces-
sary to present the global behavior in Figure 7 may hide
local discrepancies. To check more accurately these dis-
crepancies, the ratio Λ/Zode (or r/Zode in computer units)
is plotted in Figure 8. One can observe more clearly the
deviations between the results. The maximum deviation
for all three electrodes over the entire frequency range is of
the order of 20%. For electrode 1 and 2, the deviations ob-
served for small Λ is due to the fact that Lapp. is slightly
different from the diameter L. The numerical values of
Λ/Zode for small Λ (Λ〈l) should not be considered good

for electrode No 3 because of the insufficient numerical
meshing of the smaller cutoff of the fractal geometry.

The linear regime for large Λ is found with an ex-
tremely good precision in all three cases. In computer
units, the prediction for Λ/Zode is Lp, that is respectively
5, 15, and 3125 for the curves 1a, 2, and 3 of Figure 8,
corresponding to the three electrodes.

One can observe that the agreement between the land
surveyor approximation (the continuous line) and the heat
impedance (the circles) is better than with the spectro-
scopic impedance. This is due to the fact that this ap-
proximation is really an approximation of the length of
the active zone. One should also note that the land sur-
veyor method gives naturally the crossover regimes, which
are generally out of scope of the theories which deal sep-
arately with one of the three regimes which really exist.

At last, a restrictive remark should be expressed: the
geometrical evaluation of the chords lengths does not de-
pend on the accessibility of the electrode. In other words,
the method predicts the same impedance for a concave
geometry, like in electrode 1a, and for a convex geometry
like in the case of electrode 1b. But the real behavior is
slightly different, as shown in Figure 9. This indicates a
limitation of the method.

6 The inverse problem: can one hear
the shape of an electrode?

Due to the good agreement between the land surveyor
method, based on the electrode topography only, and the
(supposedly) exact numerical values, one can examine the
inverse problem. This inverse problem can be stated in
the following manner: If one is able to measure the elec-
trode impedance with infinite precision, is it possible to
retrieve its geometry, or some geometrical characteristics
of its geometry, from the impedance data? By measuring
the impedance one would measure Zode,spec. as a function
of the faradaic resistance r.

Of course, this is not possible practically, because r
describes the rate of the electrochemical process at the
interface. It is not an adjustable parameter in a real
electrochemical experiment. By the impedance we mean
impedance spectroscopy as function of frequency, but this
will be discussed later [29]. Here, we consider only the de-
pendence of the impedance as a function of r, as if r could
be varied from 0 to infinity.

The inverse problem can be formulated in two steps.
The first step is: can one hear the length of the active
zone? The second question is: can one hear the shape? To
answer the first question, we have studied, in addition to
the previous electrodes, the response of the porous elec-
trodes shown in Figure 10. The geometry of electrode No 4
presents a deep irregular pore, the electrode No 5 presents
a narrow entry, and the electrode No 6 corresponds to
a disconnected geometry kept at uniform potential. The
length of the active zone is computed with the use of equa-
tion (9), and it is compared to the length of the active zone
obtained directly from equation (7).
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Electrode No 3Electrode No 2

Electrode No 1a Electrode No 1b

Fig. 6. Examples of finite element meshing. Note the fractal deterministic meshing used for the study of electrode 3.
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Fig. 7. Comparison between the land surveyor method and
numerical values of Zode,spec. and Zode,heat. The curve, the tri-
angles, and the circles give respectively the land surveyor pre-
diction, the spectroscopic impedance, and the heat impedance
computed from the distribution of the normalized current den-
sities through equation (7). One can distinguish between three
regimes (Makarov’s regime where Λ � l , the intermediate
regime where l < Λ < Lp, and the purely ohmic regime where
Lp � Λ), linked by two crossovers, around Λ = l and around
Λ = Lp. For electrode 1a, L = 3 and Lp = 5, for electrode
2, L = 5 and Lp = 15, and for electrode 3 studied in the
generation 5 of fractal iteration L = 243 and Lp = 3125.

The results are shown in Figure 11 for all six geome-
tries. The agreement is excellent. In consequence, one can
always consider that impedance spectroscopy gives, using
equation (9) to compute the heat impedance, a direct mea-
surement of the length of the active zone as defined phys-
ically from the heat impedance. Note that the direct use
of the spectroscopic impedance, indicated by the crosses
in Figure 11, gives only an approximate value of Lact.heat.
The second question is: can one hear the shape? Consid-

ering the inverse problem means that we work in a blind
manner and measure directly an “electrochemical” chord
length Lc,electr.(Λ) from equation (17). In computer units
(ρ and b = 1) we compute

Lc,electr.(Λ) = L.Zode,heat(Λ). (30)

Lc,electr.(Λ) then is the quantity that can be measured
through impedance spectroscopy using equation (9). This
length, which depends on geometry and Λ, can be com-
pared to the direct determination obtained from the ge-
ometry through the use of relation (20).

The results are shown in Figure 12. The general agree-
ment is good for electrodes No 1a, 2, 3 and 4 and only
partial for the electrode No 5 presenting a narrow pore
entry. (In the case of the disconnected electrode No 6 we
have no means to implement the LS method.) We thus
have a method which gives a direct measurement of the
chord length with good accuracy for irregular geometries
when the aspect ratio of the pores is not too large. It is in
that sense that impedance spectroscopy gives a mean to
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Fig. 9. Comparison between the response of concave (1a) and
convex (1b) electrodes with the same geometry.

“measure” the shape. Really, what has been done above is
to transform the physical problem in a purely mathemat-
ical question: Given a curve, is it possible to retrieve its
shape from the variation of the average chord length be-
tween two points as a function of the curvilinear distance
between these points? This constitutes the mathematical
problem I.

One can also use impedance data to give a diagnostic
of the existence of deep porosity, when one observes the in-
termediate and the resistive regime. In the high resistivity
regime, the impedance (Eq. (23)) is equal to r/bLp. Then,
measuring Zode yields Lp and the value of the crossover
which must be around Λ = Lp. A major discrepancy be-
tween this theoretical crossover and the real data indicates
the presence of a deep porosity in the electrode structure.
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Fig. 10. Three porous electrodes.

These conclusions are general. They apply to any lin-
ear Laplacian transport across a resistive interface. To be
applied to real systems, the role of the counter electrode
(or source) and the generalization to 3D situations should
be examined.

7 Role of the counter-electrode
and extension to 3D cells

The above results have been obtained under the assump-
tion that the counter electrode is far enough from the
working interface. In that situation, and except for the
case of high resistivity of the interface, the effective trans-
fer through the interface is limited by the access resis-
tance R0 of order ρ/b which is larger than the electrode
impedance given by equation (17). If one is interested in
increasing the current, one would set the counter-electrode
closer to the working electrode, in order to minimize the
global access resistance. The question arises then of the
validity of the above results in the case of a close counter
electrode. It will be shown now that the distance of the
counter electrode has only a weak effect on the value of
the electrode impedance. This is due to the fact that the
equipotential lines are approximately flat even near the
irregular interface region and this whatever the value of r.
This is shown in Figure 13. It is qualitatively clear that
the substitution of a near equipotential line, which is ap-
proximately flat, by a perfectly flat counter electrode will
be of little effect. Moreover, the global transfer in that sit-
uation is given approximately by the interface impedance
only as the impedance of the “cell” is of the same order as
the impedance of the electrode, as indicated in Figure 13c.
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Fig. 11. Comparison between the length of the real active
zone determined by the current distribution (Eq. 7), the length
of the active zone deduced directly from the spectroscopic
impedance (crosses) and the length of the active deduced from
the spectroscopic impedance by the use of equations (8) and
(9) (circles). The data corresponds to all six electrodes No 1 to
6 and for various values of Λ. One observes the identity relation
predicted by the theory.

Real electrochemical cells are generally 3d systems and
the irregular electrodes are rough surfaces embedded in 3
dimensions. The above comparison has not yet been stud-
ied in 3d, but the partial theoretical and experimental re-
sults that we have for that case can be generalized simply.
For that, one has to consider an element of surface of total
area A which exhibits a surface impedance r/A. If the di-
ameter of that surface element is LA, the access resistance
is of order ρ/LA. The crossover which defines the size of
the coarse graining is then obtained when r/Acg = ρ/Lcg

or Acg/Lcg = r/ρ = Λ. Note that a length A/LA is of the
order of the perimeter of a cut of the rough surface by a
plane. This can be formulated in a precise manner for a
fractal electrode [7].

The same type of discussion can be given for irregu-
lar surfaces in 3d. In the Makarov regime, the impedance
takes the form

Zode,heat = Zode,spect. =
r

Aact.
(31)

with

Aact. =

[∫
electrode

j2
n,N dA

]−1

. (32)

The area of the active zone Aact. will be of the order of
L2, the square of the electrode diameter.

In the high resistivity regime, the impedance will take
the form

Zode,heat = Zode,spect. =
r

Ap
, (33)
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Fig. 12. Comparison between the “electrochemical” average
chord Lc,electr.(Λ) given by equation (26) and the purely ge-
ometrical average chord Lc,geo.(Λ) deduced from equation (9)
for electrodes No 1 to 5 and for various values of Λ.

where Ap is the total area of the electrode surface.
In the intermediate regime, the impedance Zode will

be approximately equal to [ρ/Lcg(Λ)][Lcg(Λ)/L]2 or

Zode ≈ ρLg(Λ)/L2, (34)

where Lcg(Λ) is the diameter of a zone such that the
perimeter of a cut of the rough surface by a plane is of
order Λ. Equations implying the same type of approxima-
tion as (34) have been shown to apply approximately to
the impedance spectroscopy of highly ramified blocking
electrodes [28]. It should however be stressed that the va-
lidity of this expression has not been verified by extensive
numerical simulation for various 3d geometries.

For self-similar fractal electrodes in 3d, the equations
(31, 32) used in the coarse-grained electrodes should be
written, following the same type of arguments developed
in section 4 on the correlation dimension,

Zode = const. ρ

(
1

L

)D2

l
(D2−1)(Df−2)

(Df−1)

(
r

ρ

) (D2−1)
(Df−1)

. (35)

8 Impedance spectroscopy of irregular
interfaces

Impedance “spectroscopy” means the measurement of
the electrode impedance as a function of frequency and
not as discussed above the measurement of the electrode
impedance as a function of r or Λ. In a.c., the faradaic
resistance r should be replaced by 1/(r−1 + jγω), where
γ is the specific admittance of the electrodic interface.
Because the response of the system is linear and causal,
the impedance is an analytic function of the frequency
ω. Then, if one can predict the functional dependence of
the impedance as a function of r, the response for ar-
bitrary frequency will be obtained by substitution of r
by 1/(r−1 + jγω) = r/[1 + (rγω)2]1/2. exp(−jγωr). Our
method, however, does not provide directly the functional
dependence as a function of frequency.

In the Makarov regime and resistive regime, the
impedance will be respectively

Zode =
r√

1 + (rγω)2

exp(−jγωr)

bLact.
(36)

and

Zode =
r√

1 + (rγω)2

exp(−jγωr)

bLp
(37)

with corresponding expressions for surfaces in 3d. In the
intermediate regime, the dependence on r is non-linear
and the transposition is more delicate. From the graphs
of Figure 7, one observes that, to a reasonable approxi-
mation, the dependence can be fitted by a power law. In
that case, the a.c. response will be in first approximation
a power law of the argument r/[1 + (rγω)2]1/2 exp(jγωr).
The modulus of this power law will be the same power law
of the modulus r/[1 + (rγω)2]1/2. The procedure is then
to measure the modulus of the impedance as a function
of frequency and to insert r/[1 + (rγω)2]1/2 in the calcu-
lus of Lc from Λ(ω) = r/ρ[1 + (rγω)2]1/2. For a blocking
electrode with r =∞, one should substitute r by (γω)−1

everywhere in the above expressions, and Λ = r/ρ should
be replaced by Λ = 1/ργω. Impedance spectroscopy will
then provide some knowledge about the geometry when
the length Λ(ω) = r/ρ[1+(rγω)2]1/2 is of the order of the
perimeters of the various geometrical irregularities. For
values of the frequencies such that rγω〈1 , Λ(ω) will be of
the order of (r/ρ)[1 − (1/2)(rγω)−2] and will be roughly
independent of frequency. In that situation, impedance
spectroscopy will not provide a way to explore the geom-
etry. On the opposite, if rγω〉1 , Λ(ω) will be of the order
of 1/ργω and impedance spectroscopy provides a way to
explore the geometry. In this situation, the equation (9)
should be written

Zode,heat = − ω
∂Zode,spect.

∂ω
(38)

and this value should be used to compute Lc.
The conclusion that we have obtained, namely the ap-

proximate measurement of the chord length, may also be
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Fig. 13. Influence of the distance of the counter electrode for a working fractal electrode with L = 9. The electrode impedance
Zode(Λ) is computed for 10 values of the counter electrode distance d, ranging from d = L/10 to d = L (a). The dependence is
found be very weak. This is due to the fact that the equipotential lines just outside the structure are nearly flat as shown in
(b). (c) Comparison between the total cell impedance and the electrode impedance for d = l.

practically limited by the experimental accuracy in the
impedance measurement. In a reverse way, the fact that
the electrode impedance is expressed by such a simple ex-
pression as equation (17) is probably an important step to
help to understand the contribution of a possible irregu-
lar geometry to the experimental results, as the impedance
may be determined by other processes than the geometri-
cal influence discussed here [6].

9 Applications to diffusional problems

An exactly equivalent problem is the steady state diffusion
of neutral species towards an irregular interface (or mem-
brane) in the same geometry [4]. This equivalence will be

used extensively in the following theoretical paper. Here,
the flux of a neutral species across a membrane is limited
both by the diffusion from the source and the finite rate of
transfer across the membrane. Instead of a counter elec-
trode as in Figure 1, we imagine that some process main-
tains a constant concentration C0 of the species of interest
on a source situated in the same position as the counter
electrode. In this system, the transport process can be de-
scribed in terms of the vector flux Φ at coordinate x. In
the bulk diffusion obeys Fick’s law, Φ = −D∇C, where C
is the concentration of the particles of interest and D is
the diffusion coefficient. The transfer across the membrane
obeys the equation Φn = −WC, where W is the probabil-
ity per unit time, surface, and concentration for a particle
to cross the membrane. In the last equation, we neglect
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back transfer, supposing that the concentration on the
other side of the membrane is maintained equal to zero.
The conservation of the normal flux at the frontier can be
written C/∇nC = D/W = Λ. In steady state, the concen-
tration satisfies the stationary diffusion equation ∆C = 0.
These equations are equivalent to the current and poten-
tial equations, provided that we exchange Φ for J, −∇C
for −∇V , D for ρ−1 and W for r−1. It is then possible to
define a diffusion impedance ZD by the relation between
the total flux Φ and the concentration CS on the source
Φ = CS/ZD. This diffusion impedance will obey the same
law (17).

The diffusion equivalence helps to understand qualita-
tively why the behavior of a narrow entry pore is described
with less precision by the land surveyor method described
here. For finite Λ, a particle must collide several times be-
fore being absorbed. It that case, when a particle reaches
a region near the entry of the pore, it will be absorbed not
only near the point of arrival, but it has a fair chance to
be absorbed on the other side of the pore entry. For this
reason, our specific way to implement the coarse-graining
effect gives a length which is smaller than it should be and
the approximate Z is smaller that the real value. This is
the cause of the discrepancy observed in Figure 12 for
electrode No 5.

If one is looking for optimization of the transfer with
fixed transport parameters, this optimization will be ob-
tained when the surface of the irregular interface is work-
ing uniformly. This is obtained when the perimeter of a
cut of the surface by a plane (of order A/LA) is larger or
equal to Λ. Consider for example the case of the chemical
attack of a raw material. For example, an irregular solid is
etched by G-molecules such that G+ Solid→ 0 with a lo-
cal reaction flux Φ = −RCG, where R is the reactivity and
CG is the local concentration of G. In that case Λ = D/R.
If Λ〈A/LA, the solid will not be attacked uniformly.

The same considerations should apply in the Eley-
Rideal regime of heterogeneous catalysis. If a reaction
G → G∗ occurs on collision on an irregular pore wall
with a finite probability, the local flux ΦG∗ of creation
of G∗ at the surface is given by ΦG∗ = −RCG, where R is
the reactivity and CG the local concentration of G. In the
Eley- Rideal regime, the transport to the catalytic surface
is limited by molecular diffusion. As above, the condition
for the catalyst to work uniformly is that A/LA ≤ Λ, so
that the catalyst grain should not be too large. The same
considerations about optimization of the Laplacian trans-
fer apply to the diffusion exchange of oxygen in the lung
of mammals [5].

10 Conclusion

To sum up, we have developed a new method of comput-
ing the properties of electrochemical cells or equivalently
the properties of rough absorbing interfaces whatever their
geometries in the various physical regimes, including the
crossover regimes.

We have tested a simple method to find the response
of irregular electrodes in the linear response regime from

their geometry alone. Apart from the interface geome-
try, all that is needed are the values of the microscopic
transport coefficients. The robust character of this method
makes it a good candidate for the study of the response
of irregular electrodes in the non-linear regime, where the
local current across the electrode is related to the local
voltage by a non-linear relation j = f(V ).

The question addressed in the title can be answered
in several steps. First, it has been verified numerically in
d = 2 that impedance spectroscopy leads to the measure
of the length of the active zone, whatever the geometry.
The same result will be proved for any dimension in the
following paper. Second, it provides a way to detect the
existence of a deep porosity. It has been shown that, if
no deep porosity exists, impedance spectroscopy measures
approximately the average length of the chord associated
with the perimeter length Λ = (ργω)−1. In this case, the
physical question of determining the shape of the elec-
trode from its impedance spectroscopy is transformed into
a purely mathematical problem, called problem I:

“Given the average, over the electrode geometry, of the
chord length 〈Lc〉 associated to a parametric perimeter
length Λ, can one retrieve the shape of the electrode?”

To our knowledge, the answer to this question is open.
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